Stimulated Raman transitions
(You can find corresponding files in the TALISES examples folder)
In this example we simulate a three-level system undergoing stimulated two-photon transition across an intermediate state that will only be sparsely populated during the process.
The three levels comprise of a ground, excited and intermediate state \( |g\rangle,|e\rangle,|i\rangle \).
Furthermore, we have two laser as time-periodic potentials \(\omega_\mathrm{S}, \omega_\mathrm{P}\).
A coupling exists only between \( |g\rangle \leftrightarrow |i\rangle \leftrightarrow |e\rangle \), but not \(|g\rangle \nleftrightarrow |e\rangle\).
The potential part of the Hamiltonian is
$$
V(t)/\hbar =
\displaystyle \left[\begin{matrix} \omega_{g} & 0 & \frac{\Omega_{gi} e^{i \omega_{P} t}}{2}\\
0 & \omega_{e} & \frac{\Omega_{ei} e^{i \omega_{S} t}}{2}\\
\frac{\Omega_{gi} e^{- i \omega_{P} t}}{2} & \frac{\Omega_{ei} e^{- i \omega_{S} t}}{2} & \omega_{i}\end{matrix}\right]
$$
A sketch of this level system looks like this
where we additionally defined
\(\omega_i-\omega_\mathrm{P}-\omega_g=\Delta\)
and
\(\omega_\mathrm{P}-\omega_\mathrm{S}-\omega_e+\omega_g = \delta\).
Usually \(\Delta\) is called the one-photon detuning, and \(\delta\) the two-photon detuning.
One can transform the above stated potential to a time-independent form
$$
V(t)/\hbar =
\displaystyle \left[\begin{matrix}
0 & 0 & \frac{\Omega_{gi} }{2}\\
0 & \delta & \frac{\Omega_{ei} }{2}\\
\frac{\Omega_{gi} }{2} & \frac{\Omega_{ei} }{2} & \Delta\end{matrix}\right]
$$
which is much better to simulate in terms of computational demand.
For our simulation we take \(\Omega_{gi} = \Omega_{ei} = 100\, \text{kHz}/2\pi\) and \(\Delta=1 \,\text{MHz}/2\pi \).
From analytical results one can calculate that the generalized Rabi frequency between excited and ground state is
\( \tilde{\Omega}_R = \frac{1}{4\Delta}\Omega_{gi}\Omega_{ei} = 10\,\text{kHz}/ 2\pi\).
Thus, one Rabi-cycle takes \(200\, \mu \text{s}\).
We drive two Rabi-cycles resonantly, and after \(400\, \mu \text{s}\) slowly start to increase the two-photon detuning from \(\delta = 0\)
by a rate of \(0.1 \,\text{kHz}/\mu\text{s}\).
The XML-file reads
<SIMULATION>
<N_THREADS>4</N_THREADS>
<DIM>1</DIM>
<INTERNAL_DIM>3</INTERNAL_DIM>
<FILENAME>0.000_1.bin</FILENAME>
<FILENAME_2>0.000_2.bin</FILENAME_2>
<FILENAME_3>0.000_2.bin</FILENAME_3>
<ALGORITHM>
<T_SCALE>1e-6</T_SCALE>
<M>1.44466899e-25</M>
</ALGORITHM>
<CONSTANTS>
<f_gi>1e5</f_gi>
<f_ei>1e5</f_ei>
<f_Delta>1e6</f_Delta>
<f_delta>2e3</f_delta>
<t0>400e-6</t0>
<Dt>100e-6</Dt>
</CONSTANTS>
<SEQUENCE>
<interact Nk="1" dt="2" output_freq="packed" pn_freq="each"
V_11_real="0" V_11_imag="0"
V_12_real="0" V_12_imag="0"
V_13_real="2*pi*f_gi/2" V_13_imag="0"
V_22_real="2*pi*f_delta*(1/2+1/2*sign(t-t0))*((t-t0)/Dt)" V_22_imag="0"
V_23_real="2*pi*f_ei/2" V_23_imag="0"
V_33_real="2*pi*f_Delta" V_33_imag="0"
>1000</interact>
</SEQUENCE>
</SIMULATION>